Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem.-2) ENGINEERING MATHEMATICS - II

Subject Code: BTAM-102 Paper ID: [A1111]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write briefly:

- a) Find the rank of the matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -3 & 0 \\ 3 & -3 & 1 \end{pmatrix}$
- b) If λ be an Eigen value of a non-singular matrix A then show that $\frac{|A|}{\lambda}$ is an Eigen value of Adj (A)
- c) Use Demoivre's theorem to prove that $\cos^6 \theta = 32 \cos^6 \theta 48 \cos^4 \theta + 18 \cos^2 \theta 1$.
- d) Find the modulus of the complex number $(1 i)^{1+i}$.
- e) Test the convergence/divergence of the series $\sum_{n=1}^{\infty} \frac{5^n}{4^n + 3}$.
- f) Let $\sum_{n=1}^{\infty} a_n$ is convergent series of non-negative numbers, $a_n \neq 1$, $a_n > 0$ for all n.

What can be said about the convergence of the series $\sum_{n=1}^{\infty} \frac{a_n}{1-a_n}$.

- g) Find the Wronskian of the functions 1, $\sin x$, $\cos x$.
- h) Find the general solution of the equation $4x^2y'' + y = 0$.

- i) Solve the differential equation $ye^{xy} dx + (xe^{xy} + 2y)dy = 0$.
- j) For what values of x do the series $\frac{1}{1-x} + \frac{1}{2(1-x)^2} + \frac{1}{3(1-x)^3} + \dots \infty$, converges?

SECTION-B

- 2. a) Find the complete solution of the differential $y'' + 3y' + 2y = x e^x \sin x$.
 - b) Use method of variation of parameters to find the general solution of the differential equation

$$y'' - y = \frac{2}{1 + e^x}.$$

3. a) Find the complete solution of the differential equation

$$(1+x)^2 y'' + (1+x)y' + y = 4 \cos(\log(1+x))$$

by using operator method.

b) Find the solution of the equation $y + px = x^4 p^2$, where $p = \frac{dy}{dx}$.

3

- 4. a) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x + \sqrt{xy}}$
 - b) Solve the following simultaneous differential equation

$$\frac{dx}{dt} + 2y + \sin t = 0$$
, $\frac{dy}{dt} - 2x - \cos t = 0$ given that $x(0) = 0$, $y(0) = 1$

5. a) An *e.m.f* E sin pt is applied at t = 0 to a circuit containing a capacitance C and inductance L. The current i satisfies the equation $L\frac{di}{dt} + \frac{1}{C}\int i \, dt = E \sin pt$ 5

If $p^2 = 1/LC$ and initially the current *i* and the charge *q* are zero, then show that the current *i* any time *t* in the circuit is given by $(Et/2L) \sin pt$

b) Solve the equation
$$\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$$
 3

SECTION-C

6. a) Find the Eigen values and the corresponding Eigen vectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

4 b) Use the rank method to find the values of λ for which the system of equations

$$3x - y + 4z = 3$$
; $x + 2y - 3z = -2$; $6x + 5y + \lambda z = -3$; has

- i) Unique solution
- ii) Infinitely many solutions. Determine the solution in each case.
- 7. a) For what values of α and β the series

$$1 + \frac{1+\alpha}{1+\beta} + \frac{(1+\alpha)(1+2\alpha)}{(1+\beta)(1+2\beta)} + \frac{(1+\alpha)(1+2\alpha)(1+3\alpha)}{(1+\beta)(1+2\beta)(1+3\beta)} + \dots \infty$$
 converges/diverges.

b) Test the convergence/divergence of the following series : 3,2

3

4

i)
$$\left[\frac{2^2}{1^2} - \frac{2}{1}\right]^{-1} + \left[\frac{3^3}{2^3} - \frac{3}{2}\right]^{-2} + \left[\frac{4^4}{3^4} - \frac{4}{3}\right]^{-3} + \dots \infty$$

ii)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$

- a) Find all the roots of the equation $z^7 + z^4 + z^3 + 1 = 0$. 8.
 - b) If $tan(x + iy) = e^{i\theta}$, then find the value y in terms of θ . 4
- 9. a) Use C + i S method to find the sum of the series 4

$$\sin^2\alpha - \frac{1}{2}\sin^2\alpha\sin 2\alpha + \frac{1}{3}\sin^3\alpha\sin 3\alpha + \dots \infty.$$

b) Separate real and imaginary parts of $\log \sin(x + iy)$. 4